Silicon photonics fiber-to-the-home transceiver array based on transfer-printing-based integration of III-V photodetectors.

نویسندگان

  • Jing Zhang
  • Andreas De Groote
  • Amin Abbasi
  • Ruggero Loi
  • James O'Callaghan
  • Brian Corbett
  • António José Trindade
  • Christopher A Bower
  • Gunther Roelkens
چکیده

A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 μm2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiconductor Nanomembrane-Based Light-Emitting and Photodetecting Devices

Heterogeneous integration between silicon (Si), III-V group material and Germanium (Ge) is highly desirable to achieve monolithic photonic circuits. Transfer-printing and stacking between different semiconductor nanomembranes (NMs) enables more versatile combinations to realize high-performance light-emitting and photodetecting devices. In this paper, lasers, including vertical and edge-emittin...

متن کامل

Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics

Heterogeneous crystalline semiconductor nanomembrane (NM) integration is investigated for single-layer and double-layer Silicon (Si) NM photonics, III-V/Si NM lasers, and graphene/Si NM total absorption devices. Both homogeneous and heterogeneous integration are realized by the versatile transfer printing technique. The performance of these integrated membrane devices shows, not only intact opt...

متن کامل

Silicon-Photonics Devices for Low-Power, High-Bandwidth Optical I/O

Electro-optic transceivers integrated in silicon-photonics interposers are attractive for realizing low-power high-bandwidth Optical I/O for future advanced logic and memory. We review recent results obtained at imec on low-voltage silicon ring modulators and Ge photodetectors. OCIS codes: (200.4650) Optical interconnects; (250.4110) Modulator; (250.0040) Detectors 1. Silicon-Photonics Interpos...

متن کامل

Novel adiabatic tapered couplers for active III-V/SOI devices fabricated through transfer printing.

We present the design of two novel adiabatic tapered coupling structures that allow efficient and alignment tolerant mode conversion between a III-V membrane waveguide and a single-mode SOI waveguide in active heterogeneously integrated devices. Both proposed couplers employ a broad intermediate waveguide to facilitate highly alignment tolerant coupling. This robustness is needed to comply with...

متن کامل

Horizontal slot waveguide-based efficient fiber couplers suitable for silicon photonics

Introduction Silicon-on-Insulator is emerging as a very suitable technology to develop silicon-based photonic integrated circuits. This technology is 100% CMOS compatible, allowing the development of planar optical devices and making possible to achieve very large scale integration (VLSI). However, nonlinear effects in silicon are inefficient. Materials which have superior optical properties, s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 25 13  شماره 

صفحات  -

تاریخ انتشار 2017